Technology Review of Cell Lysis Methods

PDF Download: 20170718-infinity-supercritical-cell-lysis-methods


Plant Cell Pressure |Strength of Plant Cell Walls | Ways to Break Cell Walls


How to Break Down Cell Walls:


-Grinding: Mortar and pestle, which is often done with plants frozen in liquid nitrogen.

-Beadbeating: Cracking open cells using ceramic or glass beads, typically done in suspension and in a vortex.
-Sonification: Using ultrasound with plant matter in a solution, by cavitation shockwave. -Homogenizer: Shear force by forcing cells through tubes smaller than cells, by rotor- stator (rotating blade) or outer layer shear (French Press).

-Freezing: Cell rupture from freeze thaw process. Can take lots of time.

-High Temperature (and Pressure): Cells walls are disrupted, but denatures proteins, and heat can damage cell contents. Typically by autoclave, microwave, steam, etc.

Non-Mechanical Methods:

-Enzymes: Remove cell wall by using naturally occurring enzymes.

-Chemicals: Organic solvents like ethanol (alcohol), especially for hydrophobic (doesn’t like water) molecules. Commonly used with shearing forces.
-Bacteria: EDTA, negative bacteria, to chelate cations that bore holes in cell walls.

REF: down-the-walls-part-ii-8-methods-to-break- down-cell-walls/


Cell Lysis Methods:
Reagent Based Methods:
-Fast, efficient, reproducible
-Can extract total protein or subcellular fractions
-Disrupts cell wall and or lipid membrane


Physical Methods:
-Expensive equipment
-Larger footprint for equipment

-Less reproducible

-Not compatible with high-throughput and small volumes

-Aggregation and denaturation of protein may occur
-Cells disrupt at different times

REF: https://www.thermofisher. com/us/en/home/life-science/protein- biology/protein-biology-learning- center/protein-biology-resource-library/pierce- protein-methods/traditional-methods-cell-



Tensile Strength of Cell Walls

Cylindrical Cell Shape: 100 atm or 1,470 psi

Spherical Cell Shape: 95 atm or 1,396 psi

Spherical Cell Shape: 30 atm or 441 psi

REF: https://www.ncbi.nlm.nih. gov/pmc/articles/PMC1074911/pdf/plntphys0 0593-0165.pdf

Plant Cell Vacuoles

The central vacuole (may be 80 percent of space) is a membrane bound sac which provides cell support and helps the plant function with growth.

Turgor Pressure: Vacuoles help to maintain and control the rigidity of the cell (structure),

by compensating the osmotic pressure from within the cell and pressure exerted from outside the cell.


Additional Reading:

Cannabis sativa: The Plant of the Thousand and One Molecules



Cell Disruption Using a Microfluidizer

Using a Microfluidizer versus a French Press using the same 20,000 psi back pressure, resulted in 92 percent breakage in 8 passes, versus only 50 percent breakge for the French Press in 7 passes.

REF: disruption-publication-summaries.pdf

Practical Use of Continuous Processing in Developing and Scaling Up Laboratory Processes

Continuous flow reactors allow for better control of exothermic processing than do batch reactions, and allow for a more efficient and safe scale-up of rapid reactions in a smaller footprint.

REF: http://pubs.acs. org/doi/abs/10.1021/op0100605? journalCode=oprdfk

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s